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Abstract. The complex permittivity of a composite dielectric containing conducting 
inclusions is derived. The shape of the inclusions is described by their aspect ratio. The 
resultant equations describe the frequency dependence of the permittivity exactly, without 
recourse to empirically derived parameters. 

1. Introduction 

Conductor-loaded dielectric materials are useful as radar-absorbing materials, static- 
dissipative plastics [ 11, bioelectromagnetic phantoms [2], conducting coatings [3], EMI 
shields [4] , conductive adhesives [ 5 ] ,  etc. Typical inclusions like flaky graphite lamellae, 
needle-like metallic fibres or near-spherical conducting powders can be used to alter the 
dielectric and conductivity characteristics of an insulating host medium significantly. 
The effective permittivity and/or conductivity of the mixture are decided by: (i) volume 
fraction, geometrical shape and conductivity of the inclusions; and (ii) electric sus- 
ceptibility of the host dielectric. Two other deciding factors are the frequency and 
statistical aspects of the random particulate dispersion in the mixture. 

Existing formulations [3, 6-43], which describe the dielectric behaviour of het- 
erogeneous systems, in general, refer to: (1) calculation of effective permittivity of the 
mixtures; and (ii) calculation of dielectric loss associated with such heterogeneous 
systems. Most often, as indicated by van Beek [6], development of mixture-permittivity 
formulations and analyses of dielectric loss phenomena have been treated as two inde- 
pendent strategies. 

Confining attention to binary mixtures of homogeneous, isotropic non-conducting 
constituents (pure dielectric-dielectric mixtures), the calculation of relative permittivity 
of the mixture has received considerable attention [6, 71; the mixture permittivity is 
expressed in terms of the permittivities and volume fractions of the constituents. In the 
absence of an explicit parameter depicting the shape of the constituent particulates, 
most of the mixture formulations are quasi-empirical in nature, and the reliability of 
their applicability to random binary mixtures has been regarded as questionable [7]. 
However, for well defined geometries (such as spheres, ellipsoids, etc), application of 
electrostatic potential theory and polarisation considerations has enabled near-exact 
formulations as described by Calderwood and Scaife [7] and by Fricke [8,9]. 

In the evaluation of relative permittivity of dielectric-dielectric mixtures, the com- 
ponents of the heterogeneous systems have been tacitly assumed to be loss-free [6], but 
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this conditions is not often fulfilled. The loss phenomena associated with dielectric 
mixtures are due to the various polarisations caused by relative displacement of electrons 
and nuclei, dipolar orientations and interfacial (Maxwell-Wagner) effects [ 101 at the 
boundaries between the mixture components [6]. The lossy behaviour of the mixture 
becomes even more pronounced when a conducting material (such as metallic particles, 
graphite lamellae, etc) is dispersed as a constituent in a dielectric-conductor mixture 

Inasmuch as dielectric loss is a polarisation-based phenomenon, it is frequency- 
dependent due to relaxation effects and is strongly influenced by the particulate 
geometry. In other words, a heterogeneous mixture with conducting inclusions should 
be characterised by complex permittivity parameters depicting the dielectric spectrum 
and its explicit dependence on particle geometry (apart from the volume fractions, 
permittivities and conductivities of the mixture components). Ideally, the complex 
permittivity spectra, namely the variations of relative permittivity and conductivity (or 
dielectric loss) of the conductor-loaded mixture with frequency, should be tractable by 
non-empirical formulations. All the included parameters of such formulations should 
be explicit quantities derived from the input values of permittivities, and conductivities 
and particulate geometry of the mixture constituents. 

For conducting inclusions of simple shape (such as spheres, spheroids, etc) dispersed 
randomly in a host medium, and for existing formulations such as those of Fricke [8,9] 
or those described in [6], the geometrical aspect of the particulates has been accom- 
modated as a shape factor. But, the frequency dependence of the relative permittivity 
has been specified only as limiting values, namely, E ,  (static permittivity) and E, (per- 
mittivity at infinitely high frequency), as per Debye’s complex admittance relation 
[6]. The frequency dependence of the permittivity characteristics of a lossy mixture 
dielectric, however, has not been explicitly formulated; a semiempirical approach based 
on frequency-independent limiting values of relative permittivity (such as those given 
by equations (3.27), (3.28), (3.38) and (3.39) in [6]) isoften resorted toin thedescription 
of dielectric spectra. Specific to mixtures constituted by shaped inclusions randomly 
dispersed in a host dielectric (with a significant volume fraction), the dielectric spectral 
formulations that have been adopted are therefore purely empirical; and they are 
decided largely by curve-fitting strategies on experimental data [12-141. 

In the present study, however, an analytical method is proposed to derive non- 
empirical, closed-form solutions to describe the relative permittivity and conductivity 
spectra of a conductor-loaded dielectric. This is done by extending the logarithmic law 
of mixing [22-271 to complex dielectric susceptibility and choosing an appropriate order 
function to depict the influence of particulate geometry on dielectric polarisation. 
In addition, the following are also taken into consideration. (i) The host receptacle 
(dielectric) and the inclusions (conductor) are electrically non-conducting and conduct- 
ing, respectively. (ii) Such extreme characterisations of the mixture components render 
the test mixture either conductivity-dominant or permittivity-dominant, depending on 
whether the ratio O / W E ~ E  is large or small; here (7 and E refer to the conductivity and 
relative permittivity of the mixture respectively, o is the angular frequency and E~ is the 
free-space permittivity. (iii) Depending on the volume fraction of conductor loading, 
random current paths could also be formed, which may cause an erratic transitory 
switching from a low- to a high-conductivity property of the mixture [19]. 

Earliest versions of conductor-dielectric mixture formulations are due to Maxwell 
[28] and Rayleigh [29], who, on the basis of classical Clausius-Mosotti/Lorentz-Lorenz 
concepts of electrostatics, derived the static permittivity of a dielectric dispersed with a 
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dilute phase of conducting inclusions. Bruggeman [30] extended Rayleigh's formula by 
considering incremental changes in volume loading and arrived at the so-called 1/3 
power law. Replacing the 1/3 exponent with an empirical constant, the relevant for- 
mulation has become known as Archie's law [31]. 

In more rigorous and recent analyses, two types of approach as indicated earlier have 
been pursued. In the first method, the dielectric effects and conductive effects are treated 
independently [ll-13,30,31]. The other method considers the effect of the conductor 
as a loss factor, with the asumption of a conductor having infinite permittivity [14-16, 
20,321. In both approaches, however, only the static (DC) values have been evaluated. 

Thus, La1 and Parshad [ 141 extended the pure dielectric-dielectric mixture theory to 
a dielectric-conductor composite, and derived an expression for the static (relative) 
permittivity of the mixture ( E , )  in termsof the volume ratio 8 of the conductor inclusions: 

E ,  = E2~/(i  - e p .  (1) 
In this relation, 
parameter of the conducting particles, related to the depolarisation factors Ai via 

is the static permittivity of the host dielectric and B is a shape 

B = ~ C A ; .  
The subscript i refers to the ith axis of an ellipsoid with axes a ,  b and c. For a spheroidal 
particle b = c and, defining x = a/b ,  x = 1 specifies spherical particles. Prolate sphe- 
roidal particles with x > 1 will become needle-like fibres when x 9 1. Likewise, oblate 
spheroids with x < 1 will represent flaky, disc-like lamellae when x G 1. A,  can be 
evaluated by an integral relation due to Wallin [17]. 

It may be noted that equation (1) cannot be extended to frequency-dependent 
dynamic conditions; nor is evaluation of B straightforward. Results presented in [14] 
are therefore based on an empirical value of B obtained via curve fitting to a set of test 
data. 

Considering the conductivity of the test mixture, Scarisbrick [12] developed a ran- 
dom-chain model, to which Kusy [13] added a shape-dependent order function ( U )  
established via probabilistic considerations. Again, the relevant expression refers only 
to DC conductivity of the mixture and is given by 

(3) (7Dc = K Z ~ ~ ~ I + C ' B - ~ ' '  

where K is a constant decided by the conductive path cross section and U is an order 
function. 

Frame and Tedford [3] used equations (1) and (3) to evaluate the static permittivity 
and DC conductivity of a composite made of alkyd resin loaded with graphite lamellae. 
In the relevant studies, the exponent B of equation (1) best-fitted to experimental data 
on static permittivity was 6.2. The corresponding calculated value, A = 1/13, was then 
compared against the average geometrical aspect ratio. In other words, absolute deter- 
mination of E ,  via equation (1) is not straightforward even with an apriori knowledge of 
particulate geometry. 

Further, though Frame and Tedford [3] measured the dielectric spectrum of the test 
mixture, their results could not be compared with any theoretical results due to the lack 
of availability of any relevant frequency-dependent formulation. 

Considering the mixture conductivity, equation (3) could be best-fitted to the exper- 
imental data of Frame and Tedford [3] only with an unjustifiable presumption of the 
resistivity of graphite being 1 Qm (which is far greater than the established value of 
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5 x Qm). Moreover, the 'best-fitted' curve hardly matches the experimental data 
at high and low volume fractions of inclusions (see figure 4 of [3]). Thus, even the 
rigorous formulation based on the model of Scarisbrick [12] and Kusy [13] seems to be 
semiempirical. 

In view of the aforesaid shortcomings and persisting incompatibility of the existing 
formulations, it is attempted here to develop a dielectric-conductor mixture model 
based on complex susceptibility considerations. 

2. Complex susceptibility model 

Let E and (5 denote the relative permittivity and conductivity of the mixture. Subscripts 
1 and 2 are used to specify the corresponding variable of the conducting inclusions and 
the dielectric matrix, respectively. The volume fraction of the inclusions is denoted by 
8. and U is an order function decided by the geometrical aspect ratio (x = a/b)  of the 
inclusions. 

The electrical characteristics of a mixture formed by a random volumetric dispersion 
of shaped inclusions in a continuous host medium can be specified by functional relations 

f ( E )  = m,> + (1 -- elf(&*) 
and 

= Wal) + (1 - O)g(a2). 
Here, the functionsfandg determine the law of mixing and, if they are known explicitly, 
the values of E and (5 can be determined uniquely. The law of mixing pertaining to a 
statistical mixture is constrained by: (i) Wiener's proportionality postulate [33, 341; (ii) 
Wiener's upper and lower bounds on E and a; (iii) the limiting values of 0 s 19 s 1 and 
0 < U < 1; and (iv) geometrical dissimilarity of the components in the mixture matrix. 

The analytical endeavour of evaluating the functionsf and/or g for various types of 
pure dielectric-dielectric mixtures resulted in several formulations; a comprehensive 
review of them has been published by Brown [35] and van Beek [6]. The contents of 
these reviews have also been summarized and reported by Tinga and Voss [36]. 

These formulations, however, ignore the chaotic aspects of the mixture, except the 
so-called logarithmic law of mixing due to Lichtenecker [26, 271. But this logarithmic 
law, however, does not take the particulate geometry into account, as well as lacking a 
linear form [23, 371. These deficiencies have, however, been offset by the author and 
others as reported in [22,23]. 

In the following analysis, the logarithmic law is extended to a generalised electric 
susceptibility parameter x pertaining to a dielectric plus conductor mixture subjected to 
complex field [38] considerations. Hence, a dynamic model is developed to calculate the 
effective complex permittivity of the test mixture. 

The complex susceptibility of a conductor-loaded mixture can be specified as a 
logarithmic model in the following form: 

In terms of the explicit parameters of the mixture constituents, namely ( E ~ ,  ol) and 
(c2 ,  a*), equation (4) can be written as 

where E~ is the free-space permittivity, U = 2n x frequency, tan 6 2 ( = c 7 2 / ~ ~ O ~ 2 )  is the 
loss tangent of the host medium and q = tan-'[&* tan a*/(&* - l)]. 

i o g x =  e i o g x l  + ( 1 -  e)10gx2.  (4) 

x = ( a l / w ~ ) O  exp(in0/2){[(~~ - I ) ~  + (sZ tan 62)2]1/2 exp(-iq)}'-' ( 5 )  
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Using the relation ( E  - 1) = R e x ,  it follows that 

E = ( a 1 / ~ ~ O ) 0 [ ( ~ 2  - 112 + ( E ~  tan 62)2](1-0) /2  cos[n?~8/2 + cp(1 - e)] $ 1 .  (6 )  

The conductivity (a) of the mixture can be extracted from Im x. Thus, 

Equations (6 )  and (7) should, however, be 'weighted' to meet the limiting conditions, 
namely (E, a) = ( E ~ ,  a2) at H = 0 and (el ,  al) at 8 = 1. 

Further, by including the geometrical dependence via an order function U in the 
logarithmic formulation of equation (4), the following modified expressions for E and a 
are obtained on the basis of the arguments given by the author elsewhere [23]: 

and 

a m o d / ~ ~ O  = c ~ [ ( ~ , / w E , ) ~ ( E ,  - sin(n8/2)]'~ + ( a 2 / u ~ , , )  (9) 

under the valid assumptions that a2 4 a1 and 
C1 and C2 are weighting coefficients decided by the limiting conditions, namely E = 
at 8 = 0 and a = a1 at 8 = 1.  Hence, they are specified explicitly as 

tan a2 ( E ~  - 1). Here, the coefficients 

and 

The order functions U ,  and U, implicitly determine the dependence of E and cr, 
respectively, on the geometrical aspect ratio x (=a/b)  of the particulate inclusion. 
Defining the particle eccentricity e (= 1 - b/a)  when b < a or (a /b  - 1) when a < b ,  the 
value of e = 0 corresponds to spherical particles; U, and U,should therefore be expressed 
in terms of e. That is, for a given eccentricity, the U,th fraction of the chaotic system can 
be regarded as being polarised along the electric field and the (1 - U,)th fraction along 
the orthogonal direction. Likewise, U ,  should represent the fraction corresponding to 
current percolations. 

On the basis of similarity to Maxwell-Boltzmann statistics applied to dipole orien- 
tation [39], the upper and lower bounds of the order function can be specified as follows: 

Uu = ; [ I  - L(e)/e] = 1/3 when e + 0 (11a) 

U, = +[L(e) /e]  = 1/6 when e+ 0 (1lb) 

where L ( e )  is the Langevin function, equal to coth(e) - l/e. The functions U ,  and U, 
can be equated to U, or Uu depending on the following states of the test mixture. For 
large values of ( O ~ / W E ~ E ~ ) ,  the composite can be considered as conductivity-dominant; 
and, for low values of (O~/WE, ,E~) ,  the mixture becomes permittivity-dominant. Accord- 
ingly, the permittivity of the mixture as a function of frequency can be sketched as shown 
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Figure 1. Permittivity versus frequency of a con- 
ductor-loaded dielectric: curve A, for large vol- 
ume fractions 0 of inclusions; curve B, for low 
volume fractions 0 of inclusions. The shaded 
region refers to the bounded range of values that 
E may assume as decided by the aspect ratio of 
conducting inclusions (1 a/b x). 

0 1 2 3 4 5 6  
log ( f  1 

Figure 2. Dielectric spectrum of alkyd resin plus 
graphite. The bold 'error bars' (I) show exper- 
imental data [3]. The small points (+) and full 
curvesshow theoretical resultsof present method. 

in figure 1, indicating three zones, namely, the low-frequency, the high-frequency and 
the intermediate (quasi-static) regions. It is, however, to be noted that the region-to- 
region transition is not abrupt. For calculation purposes, two corner frequencies, namely 
wL and oH, can be approximately assigned marking the transitions as shown in figure 1, 
since the regions are distinguishable in terms of de'/dw slope. In summary, the complex 
permittivity spectra of a conductor-loaded mixture can be specified by the following: 

(i) Complex permittivity of the mixture ( E )  

E = E '  - iE'' (12a) 

E' = {E& + ( E 2  - l ) ~ ~ ] > { [ ( U l / C L ) E O ) ~ ( E 2  - 1)I-O cos(n0/2)". +1] (12b) 

E'' = U / / W E O & '  (12c) 
U = (al - B ~ ) { [ W E ~ ( E ~  - 1 ) / 0 ~ ] ' - ~  ~ i n ( n 0 / 2 ) } ~ ~  -+ u2. ( 1 2 4  

(ii) Order functions U ,  and U ,  at low frequencies (0 < wL) 

U" = 4[1 - L(e ) / e ]  e - 0  (13a) 

U ,  = (1/M) + ( 2  - 3 M ) / 3  e % l  (13b) 
U ,  = U ,  = 

where M = [(2 '-c e ) / ( 3  k e )  - L'(e)]-' and L ' ( e )  = d L / d e ;  the positive sign here refers 
to a/b < 1 and the negative sign is for a/b > 1. 
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(iii) Order functions U ,  and U ,  at high frequencies (w > wH) 

for all values of e. 

(iv) Calculation of approximate values of wL and wH (figure 1) 

(14) U = U  = U  - 1  
U L - z[L(e>/el 

wH is the solution of E,,d(With U,) E,,d(With U") (15a)  

and 

wL is the solution of EmOd(with U,) E,,d(With U,). (15b) 

(v) Complex permittivity in the quasi-static range (oL < w < wH) 

E' = E l  - (Et - eh)  [ln(o/wL>l/[ln(wH/oL>l (16a) 

E" = a/wEOEr (16b) 

0 = OL - (OL - OH) [ln(o/wL)l/[ln(wH/wL>l (16c) 

where ( E ; ,  aL) and ( E L ,  aH) refer to values of (E' ,  a) at wL and wH, respectively. 

3. Direct-current conductivity 

Equation (9) can be rewritten to represent the static conductivity (aDc) of the mixture. 
The DC condition refers to the limiting case of w + 0, or a factor t o  (which is extremely 
large) should replace w / 2 n  in equation (9). The factor to  can be evaluated under the 
conditionx +. 1,8 -+ 1, Uu+ 1 and oDC = ( O ~ U ~ ) ~ ' ~ ,  representing the weighted-average 
value. It is found that 

oDC = (al - C T ~ ) { [ ~ ~ E ~ ( E ~  - 1 ) / 0 ~ t ~ ] ' - ~  ~ i n ( n 8 / 2 ) } ~ ~  + u2 (17a) 

with 

?GEO(E* - 1) ot'2 + 0:p 
to = (17b) 

0 2  0112  - u p  

and 

4. Results and discussion 

4.1. Dielectric permittivity of the text mixture 

To verify the present formulations, results on the permittivity pertaining to a few 
dielectric-conductor mixtures, for which experimental data are available, were 
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computed. The results are given in table 1. Further, the theoretical results due to the 
present method on the permittivity of a typical dispersed system, as a function of 
frequency, are presented in table 2, along with the measured/calculated data due to 
Frame and Tedford [3]. On the basis of these results, the following inferences are made. 

The method of La1 and Parshad [14] requires the determination of shape factor 
(denoted as B in [14]), either via an involved calculation of depolarisation factor (in 
terms of a/b)  or by experiments. Comparable results can, however, be obtained with 
ease by the present closed-form relation of equation (12). 

Referring to table 1, the aspect ratios (a/b) used in the present formulation, namely 
1/13,1 and 1.3, closely correspond to the respective values of 1/13 (graphite lamellae), 
1 (mercury globules) and 1 (near-spherical iron particles) adopted in the best-fit exper- 
imental data. 

Considering the data on epoxy plus aluminium particles [14], the present method 
yields results close to measured values, assuming a/b = 1.5. This corresponds to the 
particle inclusions being non-spherical, concurring with the experimental observation 
that the particles were spheroidal. 

The logarithmic-law-based calculation in [16] (without the particle shape being 
considered) could be best-fitted to experimental data only with an unjustifiable assump- 
tion of the permittivity of the metal (aluminium) being 165. Thus, whereas the results 
of [16] are totally empirical, the present analysis is free from this deficiency. 

4.2 .  Dielectric spectrum 

Inasmuch as the formulation of La1 and Parshad [14] involves no frequency parameter, 
the dielectric spectrum of alkyd plus graphite mixture measured by Frame and Tedford 
[3] was not compared with any theoretical results in [3]. The present formulation 
(equation (12)), however, has the explicit w term to characterise the dynamic response 
of the test mixture. Hence, computed results based on equation (12) are depicted in 
figure 2 (and in table 2) along with the measured data due to Frame and Tedford [3]. As 
discussed earlier, two approximate corner frequencies wL (=2n X lo3) and wH (= 
2n X lo6) were calculated (equation (17)) and used in the calculations. Close agreement 
between theory and experiment is evident; again, it should be noted that the theoretical 
results are totally free from any empirical parameters. 

4.3.  DC conductivity data 

Measured data on the resistivity of alkyd plus graphite mixture obtained from Frame 
and Tedford [3] are presented in figure 3 along with the best-fit curve (curve A) based 
on Scarisbrick [12] and Kusy [13] formulations. Curve A was best-fitted [14] assuming 
the resistivity of graphite as 1 Qm, which is much different from the established value 
of 5 x Qm. Thus, curve A can be regarded only as an empirical result. 

Shown in figure 3 is also a curve obtained by the present method (equation (17a)) 
with the data available in [14], namely, graphite conductivity = 200 S (corresponding to 
p1 = 5 x Qm) and a/b ratio of the particles equal to 1/13. Since conductivity effects 
dominate at DC, U ,  was set equal to Uu and to was decided by equation (17b). 

In figure 4 measured data on the DC conductivity of a mixture of bakelite plus silver 
particles (due to Garland [43]) are presented along with the theoretical results obtained 
by the present method. 
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Figure3. DC resistivity of alkyd resin plus graphite 
mixture. The diagram shows the theoretical 
resultsof the present method (equation (17)) with 
U. = U ,  (curve P) and with U ,  = UL (curve Q).  
Data: e2 = 3.86, U ,  = 200 S m-' ,  a/b = 1/13, 
pz  = lo1' Rm and zi, = 1/(1.62 x Also 
shown are experimental results [3] (e) and best- 
fit curve (-+-) by Scarisbrick [12] and Kusy 
[13] formulation(s) (curve A). 

30 

20 
E" 

10 

10 - I 
E 

c 
a" 
- 0  m 

U 

- 

-10 
0 0.2 0.4 0.6 0.8 1.0 

e 

Figure 4. DC resistivity of bakelite plus silver mix- 
ture. Data: ~ ~ = 5 ,  alb = 1,  U ,  = 
6.17 x lo7 S m- ' ,  pz  = 10" Rm and to = 1/ 
(6.8 x The diagram shows experimental 
results [43] (0) and theoretical results of present 
method (equation (17)) with U,, = U ,  (--.-I. 

region 
...- 

1 Quasi-static region 

5 10 15 
E '  Eo3 

0 

Figure 5. Cole-Cole plot(s) for the alkyd resin 
plus graphite mixture. Data as in [3]. Curve A.  
0 = 0.17; curve B, H = 0.25. 

- 5  0 5 10 

log ( f  ) 

Figure 6 .  Plot of log(&") versus log(f) for the alkyd 
plus graphite mixture. Data as in [3] with volume 
fraction of graphite 0 = 0.17. 

In both mixtures (figures 3 and 4), it may be observed that the present theoretical 
results follow the measured data closely at low and high volume fractions and follow 
approximately the trend of resistivity transition at the threshold volume fraction. 

4.4. Complex  permittivity and Cole-Cole diagram 

Relevant to the dielectric data on alkyd plus graphite mixture, the calculated E' and E" 

as per equation (12c)  are depicted by the Cole-Cole diagram in figure 5 .  The larger 



4946 P S Neelakanta 

the conductivity of the inclusions, the further the Cole-Cole plot departs from the 
semicircular diagram. 

An alternative graphical representation of plotting the logarithm of E” (as per 
equation (12c)) against the logarithm of o permits the determination of approximate 
zoning of conductivity-dominant, permittivity-dominant and quasi-static regions dis- 
cussed before. Calculated results on alkyd plus graphite mixture are presented in figure 
6 for relevant illustration. 

4.5. Order functions 

Lastly, it may be observed that the order functions in the present studies concerning 
dielectric-conductor mixtures were evaluated via the Langevin function, which permits 
compatible limiting conditions, namely, 0 S ( UL or U,) S 1 for 0 S f3 s 1 of dielectric 
plus conductor mixtures. For pure dielectric-dielectric mixtures, however, the order 
functions are decided by a different formulation suggested by Sillars [44], as indicated 
in [23]. 

5. Conclusions 

A comprehensive approach to evaluate the complex permittivity of a dielectric-con- 
ductor mixture is presented. Present studies provide closed-form solutions to evaluate 
E ’  and E” of the test mixture, which have been compared with available experimental 
and empirical formulations. 

The complex permittivity expressions have been extended to calculate the DC con- 
ductivity (or resistivity) of the mixture and the effects of volume loading of conductive 
inclusions are studied. 

Computed results of the present method closely agree with a number of available 
data (without resorting to any empirical parameters), indicating the efficacy of the 
formulations in the practical design of test composites. 
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